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Mathematical descriptions of learning systems often involve
the following elements: 1. An input process representing the
systems environment; 2. A set of state parameters which, at
any fixed time, define the input-out relation of the system;

3. A rule, in the form of a differential or difference equation,
for updating these parameters in response to the input process.

I will describe here a technique for ascertaining the relation
between the development in time of the state parameters and the
statistics of the environment, when the latter is modelled as a
stochastic process. The point of the technique is to relate the
statistical structure of an environment to the performance of a
given model. Let me first discuss this technique in a general
context, and then give an example of its application.

Assume that the algorithm (3, above) has been formulated
in continuous time, i.e. using a differential equation for its
description. Let S(t) be an n-vector whose components are the
set of state parameters (e.g. the vector of all relevant synaptic
strengths, or the vector of coefficients in a linear regression) .
I(t) will be an m-vector representing input from the environment.
The components of I(t) may, for example, be the activities of
retinal cells, or perhaps some "higher-up" coded description of
those activities. (Of course the precise nature of this code is

critical, but not the topic of this letter.)




Now suppose that the algorithm ("¥¢") for modification of

S(t) is described as follows:

S(t) = e/AS(t),I(t)) (1)

where "e" is a small parameter modelling slow changes in S(t)
relative to the fluctuations in I(t). What I will say holds for
a class of equations much more general than (I), but most neural-
net learning models, or on-line pattern classification schemes
can be formulated as in (I). (If I(t) involves the activities

of pre and post synaptic neurons, which in turn involve (possibly
time-delayed) inputs and S(t) itself, then it is simplest to
replace these activities by their equilibrium for a given input
and state S; the assumption being that these activities are fast
relative to S(t).)

My goal is to describe the relation between the development
of S(t) and the distribution of I(t). The main requirement is
that I(t) be a strongly mixing process. This means, loosely,
that events in the distant past of I(t) and the distant future
of I(t) are nearly independent. In particular, "past" and
"future" are asymptotically independent as their separation goes
to infinity. In the pattern recognition literature, for example,
the much stronger assumption of independent samplings is typical.
It is common in physics to assume ergodicity, a property closely
related to mixing. 1In any case, mixing processes form a very
broad class, and can accommodate most realistic modes of the

environment.



The idea is to replace (I) by the deterministic equation

S'(t) = eE[AS' (£),I(t))], (I1)

where for fixed x, E[ &/ (x,I(t))] is the expected value of
¥ (x,I(t)) with respect to the distribution of I(t). Under
suitable conditions
lim sup E|S(t)-s'(t)]| = 0, (I11)
g+o t>o
so that, for ¢ small, the development of S'(t) approximates that
of S(t) (in the sense of (III)), for all time. Through this
simple averaging technique the relation between the performance
of a system and the statistics of its environment is available,
to within an approximation. What we have, of course, is a
stochastic version of the classical method of averaging developed
in mechanics (Cf. 1) (although that method did not generally
permit averaging on the entire interval, [0,«)).

Uttley (3,4, and 5) recently published a series of papers
describing a model for the recognition of patterns by neural
systems. The model has attractive theoretical properties,
performs effectively in simulation, and suggests numerous
anatomical and physiological hypotheses. Let us apply the
averaging technique to Uttley's system and see if any further
insights can be gained. Focus on the basic unit of the model -
an individual "informon". A continuous time formulatioﬁ of that
system can be expressed as follows. Let x(t) be an n dimensional

feature vector, with each component indicating the presence or



absence of some feature at time t. During a learning period,
the feature vector is continuously classified with respect to a
particular category, and this classification is expressed by
y(t), a scalar function of time. At each time t, the value of
v indicates whether or not the feature vector, x(t), belongs to
that category. The components of x, and y, can be 0-1 valued,
or more generally, continuously valued variables indicating the
amount of a given quantity. (There may be many categories, in
which case we assign a classifier, y, to each.) Finally, let
z(t) be an n dimensional state vector, whose components are to
be modified by the experience of the model.

The dynamics of the model are most conveniently defined in
the vector notation. The output is a scalar, indicating the
model's guess as to the appropriate value of y, given a feature

vector, x. The output, at time t, is
x“(t)z(t),

the inner product of z and xX. The system learns according to

the following rule:

z(t) = ex(t){y(£)-xT (t)z(t)}. (IV)

(I should mention that Uttley's notation is considerably different,
but what is here is an equivalent formulation - as a simple check
with (3) will verify. Also, refer to that article for a neural
interpretation of these dynamics.)

If ¢ is such that z changes slowly relative to the fluctua-

tions in x(t) and y(t), then the averaging technique is appropriate,



and we can approximate z(t) by z'(t):

z'(t) = e{E[xy]-E[XXT]Z'(t)},

leaving out the t, since we assume that these expectations are,

at least approximately, constant (although averaging is justified
whether or not this is true). Now as long as E[xxT] is non-

singular (i.e. as long as we have chosen the components of x

such that no one is a completely deterministic linear function

of the others), this deterministic equation approaches, exponentially
fast, the solution

T

2' = E[xx'] TE[xy].

The averaging principle then says that z(t) will also approach
Elxx ] 1 E(xy],

and thereafter remain close. Finally, then, the asymptotic
output of the model is well approximated by

T gy

<L () ElxxT]1 T E[xy], (V)

given the input x(t).

Now (V) is an encouraging result, for it is precisely the
best choice of z, in the mean square error sense - as is easily
demonstrated, and very well known in the theory of linear
regression. (In fact, if we replaced the constant "gain", e, 1in
(IV) by, say, 1/t, we would have a stochastic version of the
gradient descent algorithm, and this has been studied (c.f. (6)
and (7)).) Uttley's model, then, inherits the known advantages,

as well as difficulties, of this solution. Since the square



error criterion is an entirely reasonable measure of performance,
the solution is, in a strong sense, optimal. But this optimality
is within the context of linear solutions, and we can not be

sure that the optimal linear solution is anywhere near the
unconstrained mean square optimal (unless, for example, the
feature components and classification are jointly Gaussian).

In fact, the actual performance of this solution is highly
dependent on the particular choice of features, and in this sense
the model recasts the perception problem into the problem of
developing, possibly through experience, an appropriate feature
set. Also, unmodified stochastic descent procedures are
typically very slow (8), especially when the dimension of the
feature set is large.

Although not always explicitly, a number of authors have
exploited the close relation between equations (I) and (II) in
their analysis of learning systems. Look at the case where € is
an appropriately decreasing function of time, such as 1/t. If
"&" is the negative of the gradient of a suitable criterion
function (such as the square of the error in Uttley's case) then,
with some regularity conditions, S(t) will converge to the value
which minimizes the mean of the criterion function. A number of
general theorems of this sort are around, and Pfaffelhuber (9)
has discussed their relation to memory models. The relation to
the averaging principle is as follows. When e - 0 as t =+ «

(as with € = 1/t), (III) can be replaced by



lim E|s(t)-S'(t)]| = 0. (VI)

troo

Now in the present context, (II) is a deterministic gradient descent

procedure, implying that S'(t) converges to the minimizing value

for the mean of the criterion function. Hence, by (VI), S(t)

also converges to this "optimal" vélue.
On the other hand, when the gain, €, is fixed but small,

and when "w" is, again, the negative of the gradient of a

suitable criterion function, then S(t) will come to lie "close"

to the optimal value. (For some specific criterion functions,

the result is discussed in (10). More generally, it is a

special case of (III).) See Amari (11) for an application to

neural modelling. The work by Kohonen (for example (12),

sec. 3.2.2) on recursive computation of linear filters is in a

similar vein, albeit in a deterministic setting. There, the

input patterns are chosen from a finite set in arbitrary sequence,

but such that each pattern occurs infinitely often - a kind of

deterministic version of the mixing assumption. Indeed, the resulting

limit is the 1limit of the averaged equation, (II), where expectation

is taken with respect to any distribution on patterns, provided that

each pattern has positive probability.l

It may seem odd that the asymptotic behavior of a
filter would be independent of the marginal
distribution of the inputs. But Kohonen assumes
that each pattern is deterministically associated
with a fixed classification, and that the number of
patterns does not exceed the dimension of the

feature space. Hence there exists an exact solution



to the pattern classification problem, and the
mean square error of this solution is zero

independent of the underlying distribution.

The deterministic interpretation has the advantage that
convergence is obtained without requiring that the "gain", ¢,
approach zero (there is no variance in a given input, hence
no "noise" to be damped out).

What I wish to emphasize is that the approximation of the
solution of equation (I) by that of equation (II) is appropriate
in a broad variety of contexts (for precise conditions, see
(2)). "o/ " can be nonlinear, and need not be the gradient of
any criterion function. With regards to the input process, if,
as is often assumed, it is a sequence of independent and
identically distributed observations, then it is certainly mixing.
But many Markov processes, for example, are also mixing, and
in fact a mixing process need not even be stationary. When it
is justified, averaging simplifies the relation between the
dynamics of a model and the statistics of its environment. For
example, it is particularly simple to obtain an approximate
equilibrium for the state vector in terms of the distribution of
the input. Hence, the asymptotic performance of a model can be
evaluated.

A more general application is to utilize averaging to
define the statistical structure of those environments in which
a given model is effective. The "real-world" character of these

structures is one measure of the appropriateness of that model.
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